The Brauer Group through the Lens of Crossed Product Algebras

March 24, 2021

Table of Contents

- Division Algebras and Some Motivation
- 2 The Brauer Group of a Field
- Crossed Product Algebras
- Connection to Cohomology

What is a division algebra over a field F?

Definition

Given a field F, a **division algebra over F** is an associative, unital algebra over F (i.e. vector space over F with multiplication such that $1_AF = Z(A)$) and such that all nonzero elements are invertible.

finite dimensional.

Ex: i) Fis division algorer F.

2) H division algorer
$$\mathbb{R}$$
.

3 1, i, j, k}

 $i^2 = j^2 = k^2 = -1$
 $k = ij = -ji$

Classification

What are all of the division algebras over \mathbb{C} ? \longrightarrow \mathbb{C}

Suppose D division over C.

d & D \ C

C(d) field

linearly 1 d d² d³ dh

d is algebraic over C C(d) = C b/c algi-

Classification

HI De HI

What are all of the division algebras over \mathbb{R} ?

R, H

you take tensor when what happens two division algebras west?

product &

Not necessarily division.

HI ORH = My (R) csA that's not distro-

Central Simple Algebras over a field F

Definition

Given a field F, a **central simple algebra (CSA) over** F is an associative, unital, finite dimensional algebra, A, over F such that:

- (1) A is central $(Z(A) = 1_A F)$
- (2) A is simple (i.e. A has no proper, nontrivial, two-sided ideals.)

Table of Contents

- 1 Division Algebras and Some Motivation
- 2 The Brauer Group of a Field
- 3 Crossed Product Algebras
- 4 Connection to Cohomology

What is the Brauer group?

Definition

The Brauer Group of a field F, denoted Br(F), is the set of all CSA's over F modulo the equivalence relation \sim , where

$$A \sim B \iff A \otimes_F M_{n_1}(F) \cong B \otimes_F M_{n_2}(F)$$

for some $n_1, n_2 \in \mathbb{Z}_{>0}$.

Equivalence Relation?

We have $A \sim B \iff A \otimes_F M_{n_1}(F) \cong B \otimes_F M_{n_2}(F)$ for some $n_1, n_2 \in \mathbb{Z}_{>0}$.

AN C.

How is this a group?

The Opposite Algebra as the Inverse

n= din A

Extra Space

· Ker 4 + A Ø A°P => Ker l = 0 so l'is injective.

· Jing A = N

ding ARF=N2 = din End F A.

4.

Br(F) is an abelian gp.

· BICC) is trivial.

Some Remarks about the Brauer Group

Table of Contents

- 1 Division Algebras and Some Motivation
- 2 The Brauer Group of a Field
- 3 Crossed Product Algebras
- 4 Connection to Cohomology

Let's build some CSA's

. E a finite Galois extension of
$$F$$
.

 $A = \bigoplus_{\sigma \in G} U_{\sigma} E$

1 Let

1 Need to define mult:

 $\left(\sum_{\sigma \in G} U_{\sigma} C_{\sigma}\right) \left(\sum_{\tau \in G} U_{\tau} d_{\tau}\right) = \sum_{\sigma \in G} U_{\sigma\tau} \sum_{\sigma \in G} U_{\sigma\tau} C_{\sigma} d_{\tau}$
 $E : G \times G \longrightarrow F^{\times}$

What do we need $\Phi: G \times G \to E^{\times}$ to satisfy?

Want A to be associative!

$$(U_{\sigma}U_{\tau})U_{f} = (U_{\sigma\tau} \pm (\sigma,\tau))U_{f}$$

$$= U_{\sigma\tau} p \left[\pm (\sigma,f) \right] \pm (\sigma,\tau)$$
should be equal to
$$U_{\sigma}(U_{\tau}U_{f}) = U_{\sigma}(U_{\tau} p \pm (\tau,f))$$

$$= U_{\sigma\tau} f \left[\pm (\sigma,\tau) \right] \pm (\tau,f)$$

$$\equiv U_{\sigma\tau} f \left[\pm (\sigma,\tau) \right] \pm (\tau,f).$$

$$\equiv U_{\sigma\tau} f \left[\pm (\sigma,\tau) \right] \pm (\tau,f).$$

Extra Space

Why is A central?

x =
$$\sum_{\sigma \in G} u_{\sigma} c_{\sigma} \in Z(A)$$

$$= 0 = (1 + d)x - x (1 + d) = \sum_{\sigma \in G} u_{\sigma} d^{\sigma} c_{\sigma} - \sum_{\sigma \in G} u_{\sigma} d^{\sigma} c_{\sigma}$$

$$\Rightarrow x = \mathcal{U}_{id_{\mathcal{B}}} C = \mathcal{I}_{\mathcal{A}} C' \qquad . - - C' \in \mathcal{F}$$

Extra Space

Table of Contents

- 1 Division Algebras and Some Motivation
- 2 The Brauer Group of a Field
- Crossed Product Algebras
- 4 Connection to Cohomology

Main Connection

Theorem

If E/F is a finite Galois extension with G = Gal(E/F), then the mapping

$$\Theta_{E/F}: [\Phi] \rightarrow [(E, G, \Phi)]$$

is an isomorphism of $H^2(G, E^{\times})$ to Br(E/F).